If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2-24p+16=0
a = 7; b = -24; c = +16;
Δ = b2-4ac
Δ = -242-4·7·16
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{2}}{2*7}=\frac{24-8\sqrt{2}}{14} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{2}}{2*7}=\frac{24+8\sqrt{2}}{14} $
| 5a/2=-10 | | X-2=-4x÷13 | | 4x-8=3(2x-1)-2x+1 | | -10+a=8 | | X-12=4x+13 | | 2x+7=13+x | | 3(y-7)-2(y-3)=-18 | | p+24=-4p | | |2x=7|=5 | | -37+e=-25 | | 4(k-2)=2(k+2) | | 44=23−3n | | e-29=28 | | 24+d=19 | | 2/5x+1=1/2x-9 | | 5x+11=-6x4 | | -3b/4=14-5 | | 8.5x+4.4x^2=0 | | -4(4x+6)=-93 | | (4x)+(8x-24)=180 | | X+2y-3=03X+y+1=0 | | 4x+24=37 | | 3(2p+5)=-21 | | 12=(2)(3.14)(3)h | | 14=56÷t | | 2y—1=17 | | 45X-10y=0 | | 6x+27=2-9x | | m/6+7=11 | | 4x+238=2x146 | | (4x+238)=(2x+146) | | X=8-12x |